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IDENTITIES AND RELATIONS RELATED TO
COMBINATORIAL NUMBERS AND
POLYNOMIALS

YILMAZ SIMSEK

ABSTRACT. This paper presents some new families of special numbers
and polynomials including the Euler numbers and polynomials, the Stir-
ling numbers of the second kind, the central factorial numbers and the
array polynomials. We give some properties of these numbers and poly-
nomials with their generating functions. Finally, by using these generat-
ing functions with their functional equations, we derive some identities
and relations realeted to these special numbers and polynomials.
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1. INTRODUCTION

In order to give our paper new results including identities and relations
which are associated with combinatorial numbers, the .array polynomials,
the first and second kind Euler numbers and polynomials and the central fac-
torial numbers of the first kind, we need the following definitions, generating
functions an relations.

The first kind Apostol-Euler polynomials of order-higher are defined by
means of the following generating function:

2\ S "
(1) Fpi(t,x;k,\) = <)\et—+1) e —TLZZOEn (x’)‘)a>

(|t] <7 when A =1 and |t| < [In(—A)| when X # 1), X € C, set of complex
numbers, k € N={1,2,3,...}. Setting z = 0 in (1), we have the first kind
Apostol-Euler numbers of higher-order as follows

EP () = B (0;).
Setting £ = A =1 in (1), we have the Euler numbers of the first kind
E, = E’r(Ll)(]‘)

(cf. [4]-[40]; see also the references cited in each of these earlier works).
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By using generating function, we give few values of the Euler numbers of

the first kind as follows:
1 1
Ey=1F=—FE3=—-,...
0 s 41 23 3 4a

Observe that when n > 0, it is easy to see that
Ey, =0.

The second kind Euler numbers are defined by means of the following

generating function:
2 S
) S i

n=0
(cf. [4]-[40]; see also the references cited in each of these earlier works). By
using this generating function, we compute few values of the numbers E as
follows:

Ey=1E5=—-1,E;=5E; =—61,...
Observe that for n > 0, we have

E3ni1 =0
and
E;=2"FE <1)
" "\ 2
(cf. [?]-[23], [28], [33]; see also the references cited in each of these earlier
works).

The second kind Euler numbers of negative order are defined by means
of the following generating functions:

2 kX t
= —_— = *(_k)
(2) Fra(t, k) (et = e_t) nz:% E*

where [t| < F (cf. [5]-[40]; see also the references cited in each of these earlier
works).

The A-array polynomials S*(x; A) are defined by the following generating
function (¢f. [30]):

3) Falt,z,0:0) = (Ae—‘l

Z S™(a; )\)
where v € Ny = {0,1,2,...} and XA € C (c¢f. see also, [4], [6], [7], [11], [30],
[31]; and see also the references cited in each of these earlier works).

In [32], we gave the numbers y(n, k; \) and ya(n, k; A), which are defined
by means of the following generating functions, respectively:

(4) Fy(tksA) = = (At +1 Zyl n, k; >\
and
(5) St ks \) = ()\e At 4 2)F Zygnk)\



Identities and relations related to combinatorial numbers and polynomials

where k € Ng and A € C. By using (4) and (5), few values of the numbers
y1(n, k; A) and ya(n, k; \) are given as follows, respectively:
1 1
y1(0,0,0) = Lyn (0,1,0) = A+ 1,41(0,20) = 5A + A+ o,
pi(L,0:0) = 0,91(L 1) = A yn(1,2) = A + A,
Y1(2,0:0) = 0,51(2, 1) = A, 91(2,24) = 22 + A

and
y2(0,0;0) = 1,42(0, 1; ) = %+;+1,y2(0m> %7327 z
y2(1,0;0) = 0,92(1,1;\) = 3~ %73’2(1’29‘) - AQI;?/\ B 22;1’
Y2(2,0;0) = 0,92(2,1; \) = 21)\,y2(2,2;)\) _ )\26+)\ AGJ;Ql.

Replacing A by —X in (4), then the numbers yi(n, k; A) reduces to the
A-Stirling numbers Sy(n,v; A), which are defined by means of the following
generating function:

(/\e —1 s

ZSan)\

where v € Ny and X € C (¢f. [25], [30], [39]; see also the references cited in
each of these earlier works).
By using (6), we give few values of the numbers Sa(n,v; ) as follows:

(6) FS(tav;)‘)

S5(0,0;A) = 1,85(1,0:0) = 0, 85(1, 13 0) = A, S2(2,0;A) = 0,55(2, 1;A) = A, ...

and 51y
Sa(0,0:0) = A=
v!
If we set A = 1 in (6), then the numbers Sa(n,v;\) are reduce to the
Stirling numbers of the second kind

Sa(n,v) = Sa(n,v;1).

(cf. [3]-[40]; see also the references cited in each of these earlier works).
We ([32], [36]) investigated various properties of the numbers y;(n, k; A).
These numbers are related to the following combinatorial sum:

LI g
7 n,k;1) = C gt e +1)" =0,
@ (k1) jgo(j)a o+ 1) g
where n =1,2,...(cf. [12], [32], [36]).
We see that
52(71,’0;/\) = (_1)kyl(n7k; _/\)
(cf. 32)).

Let a and b are real numbers and A real or complex numbers. The numbers
ys(n, k; \; a, b) are defined by means of the following generating functions (cf.
[33)):

bt oty
(8)  FultkiXia,b) = 7 ()\e ) nzoygnk)\ab)
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Note that there is one generating function for each value of k.
By using (8), we have

(9) y3(n, k3 \;a,b) = ka( )Aﬂbkﬂ(a—b))

(cf. [33])-
The central factorial numbers of the first kind, T'(n, k) are defined by
means of the following generating function:

> t2n

Voo
ool (e +e —Q)k:ZT(mk)m

n=0

(10) FT(tak) =

(cf- [3], 9], [10], [16], [40], [31]; see also the references cited in each of these
earlier works). For n,k € N, we have

T(0,k) = T(n,0) = 0.

Remark 1. The central factorial numbers are related to the rook polyno-
mials, which count the number of ways of placing non-attacking rooks on a
chess board (cf. [1]). In the work of Alayont and Krzywonos [2]: the number
of ways to place k rooks on a size m triangle board in three dimensions is
equal to

Tm+1,m+1-k),
where 0 < k < m.

Remark 2. In [9, Eq-(3.15)], Cigler gave the following formula for the
numbers T (m, k):

(11) T, = g 0 (5 ) G-

The formal power series

H(t, k) = Zka

1s the uniquely determined solution of the following differential equation
et —1\ d
—_— t,k)=FEkH(t k
(et + 1) dt H(t,k) = kH(t,k)
with
T(k, k) =
Throughout this paper, we use the following notations:
N ={1,23,..}, No=NU{0} and Z= = {-1,-2,-3,...}. Here, Z
denotes the set of integers, R denotes the set of real numbers and C denotes
the set of complex numbers. Furthermore, 0" = 1 if n = 0, and, 0™ = 0 if

et (£)=se=Dtmren

v v! v!

(cf. [3]-[40]; see also the references cited in each of these earlier works).
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2. IDENTITIES AND RELATIONS ON NEW FAMILIES OF NUMBERS AND
POLYNOMIALS

In [34], we defined the numbers y4(n, k; A; a, b) and the polynomials P, (z; k; a, b, \)

by means of the following generating function, respectively:
Let £k € Ny and )\ € C.

(12)
B _

Fyu(t b Xia,b) = (4 2c) ( o ) (atb)" Zm nkidab)
m=0

and

(13) 5(t, z, k; A;a,b) = I*"yll(t,k;/\;a,b)etm

o0 tn
Z{)Pn(:p, kA a,b)ﬁ

Note that there is one generating function for each value of k.
By using (13), we have

(14)

P, (z,k;\;a,b) = ( > ( ))\k T (ja+t(k—7)b)"
(a +b+1)"320§ (h=)0)"

(cf. [34]). Substituting = = 0 into the above equation, we have

15 n,k; X;a,b M= (ja + (k — j)b)"

1) )= (HkaZ( ) X a+ (-

(cf. [34]). Partial derivative of the polynomials P,(z, k; A, a,b) with respect
to x is given by

0

%Pn(x, k; X, a,b) = nP,_1(x,k; A, a,b)

(cf [34]).

The polynomials P, (z, k; \; a, b) are related to following relation:
Pz, —k; X 1,0) = A7FEP ()
(cf. [34]).

By combining (8) with (12), we set the following functional equation,
which gives a relationship between the numbers y3(n, k; \; a, b) and the num-

bers y4(n, k; A; a, b):
_ /\k atb -bb
Fyo(t, ki A5 a,5) = Tre k(%) R, (t kix 2 5 T>

By using the above functional equation, we get

oo - m
Zy3(nak’>‘ l;aa b)ﬁ

CEEE () () et 5

" n=0j=
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Comparing the coefficients of %on both sides of the above equation, we
arrive at the following theorem:

Theorem 2.1.

MNE a—b\""’ a—bb—a
y3(n, k; X\ a,b) = k' (])<k2) <j,k)\ —5 2).

By combining (12) with (10), we set the following functional equation:

k
a—-b b—a k N1ok—j a—b, .
t k151 40 -S> ( ki (20 7).

=0

By the above equation, we obtain
k

S50 855 e S

J=0

Comparing the coefficients of £ Zyon both sides of the above equation, we ar-
rive at following theorem 1nclud1ng arelation between the numbers y4 (n, k; 15 a, b)
and the numbers T (n, k):

Theorem 2.2.

Ya <2n,k;1;aT_b,b 5 >= —b)2"2< ) (2§)12572"IT (n, 7).

By combining (12) with (5), we obtain the following functional equation:

k e b
Fy (t k51 1)k C)(29)12 JF t k1
(om0 - Z( I (5 ) emtr, (k).
By using the above functional equation, we have
k b\ 2n
b b— . k—j )! k—j (Tt)
Zm (2252 50) 5 -3 (%) e nzoym LT

Comparing the coefficients of £, sron both sides of the above equation, we ar-
rive at following theorem 1nclud1ng arelation between the numbers yy (n, k; 15 a,b)
and y2(n, k; 1):

Theorem 2.3.

a—b b—a
y4<na s Ly 2 ) 2 )

- ki( ( )(2 )12k =2n=Tyy (n, 5;1).

a+b+1)

By using (4) and (12), we get the following equation:

)\kebktk! .
(16) Fy4 (t7k,)\;a7b) = mFyl ((a—b)t,k;A ) .
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By using the above equation, we get

o0 tn
z ya (n, k; A;a,b) ]

k o~ k ) )
- 2F ZZ( ) (a = b)Y (Bk)" 31 (j, ks A7),

(a+b+1)" —

Comparing the coefficients of &, wron both sides of the above equation, we give
a relation between the numbers ya (n, k; A;a,b) and the numbers yq(n, k; X)
by the following theorem:

Theorem 2.4.
(17)
gL & P
ya (n,k; A;a,b) = a+b+1kz (a—b) (bk)"Ty1(4,k;A77).
J=
We modify equation (16), we get
Al _
Fy, (t,k; Xa,b) = mFys (t,ks A7z ab).

By using the above functional equation, we get

= tn Mgl &
Zm(n,k;)\;a,b)ﬁ +b+1k2y3nk/\ b)
n=0

Comparing the coefficients of tn—!on both sides of the above equation, we
arrive at the following theorem:
Theorem 2.5.

Aokl

18 n,k; \;a,b) = ———ya(n, k; N1 a,b).
(18) ya ( ) (a+b+1)ky3( )

Combining (17) and (18), we get the following corollary:

Corollary 2.6.
k

(19) y3(n7 k; Ail;av b) = Z < 'I; ) (CL - b)] (bk)nijyl(.% k; )‘71)'

J=0

Proof of (19) was also given in [33, Theorem 5].
By using equation (16), we also obtain the following corollary:

Corollary 2.7.

ya (n, ks Xja,b) = W—())E (bk A7,

(a+b+1)"
Combining (3) and (12), we obtain the following functional equation:
AP Rl bk
Fy, (tks—=Xa,b) = —————Fy ((a —b)t,—, k; )\_1> .
(a+b+1) a—b
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By using the above equation, we obtain

o0 tn
Z ya (n, k; —X;a,b) -

) ::0 Vel i ( ./\—1> (a—b)" ’;_7:

Comparing the coefficients of £, syon both sides of the above equation, we

give a relation between the numbers y4 (n, k; A\;a,b) and the array polyno-

mi1

ials S}}(z; A) by the following theorem:

Theorem 2.8.

i
2
3
4
5
6

[7

8

9
10

(11

[12
[13

(14

15

16

(17

[18

—b)" Nk bk
i (n, ks —Aa,b) = LA kS’T;< 3’\_1>.
(a+b+1) a—1b
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